R20

O.P.Code: 20CS0523

following example.

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Regular & Supplementary Examinations June-2024 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CCC & CAI)

Time: 3 Hours			Max. Marks: 60		
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	What do you mean by algorithm? List some of the properties of it.	CO ₁	L1	4M
	b	Classify the rules of Pseudo code for Expressing Algorithms.	CO1	L2	8M
		OR			
2		Demonstrate Towers of Hanoi with algorithm and example.	CO ₁	L3	12M
		UNIT-II			
3		Elaborate BFS algorithm and trace out minimum path for BFS for the	CO ₂	L6	12M

OR

		OK						
4	a	Compare between BFS and DFS techniques.	CO ₂	L4	4M			
	b	What is divide and conquer strategy? Write briefly about general method	CO2	L3	8M			
		and its algorithm.						
	UNIT-III							
5	a	Simplify the algorithm for Knapsack problem and analyze time	CO ₃	L4	6 M			
		complexity.						
	b	What is minimum cost spanning tree and write the algorithm of pseudo	CO ₃	L3	6M			
		code for kruskals algorithm.						
	OR							
6		Explain 0/1 knapsack problem by using dynamic programming with an	CO ₃	L2	12M			
		examples.						
		UNIT-IV						
7		Distinguish in detail 8-queens problem using back tracking with state	CO4	L4	12M			
		space tree.						
	OR							
8	a	Explain the principles of FIFO branch and bound.	CO4	L2	6 M			
	b	Explain the principles of LIFO branch and bound.	CO4	L2	6M			
		UNIT-V						
9		Determine the classes NP-hard and NP-complete problem with example.	CO ₅	L5	12M			
		OR						
10		How to make reduction for 3-sat to clique problem? and Explain	CO5	L3	12M			
		*** END ***						